y

Managing Kernel Extensions

Session 108

y

Managing Kernel Extensions

Craig Keithley
USB and FireWire Technology Evangelist

y

Managing Kernel Extensions

Dean Reece
I/0 Kit Team Manager

What You Will Learn

* What KEXTSs are
*When (not) to use them

* How KEXTSs are managed, developed
and distributed

e Pitfalls to avoid

Mac OS X Architecture

Classic Carbon Cocoa

Quartz OpenGL QuickTime

You are
here >

Darwin/Core OS
| Aqua

i CDEDEDED
D a Classic

Quartz | OpenGL IQuickTime

OS Framework: System, Security, vecLib, ...

BSDKernel
-
Darwin F"e !ys!em Ne!workllng

10 Kit

Mach Kernel

Mac OS X Kernel Extensions

* Kernel Extensions (KEXTs) add functionality
to the Mac OS X Kernel

* There are 3 types of KEXTs
» [/O Kit Drivers and Families
« Network Kernel Extensions (NKEs)

e Filesystem Extensions

Appropriate Uses of KEXTs

* Do not use a KEXT unless absolutely necessary:
« Development in the kernel is harder
» In-kernel resources are more expensive
e Crashes are fatal
* A KEXT is only necessary if
e You must respond to an interrupt
* Your primary client is in the kernel

Anatomy of a KEXT

e A KEXT is a bundle with “.kext”
 An indivisible item to users

extension

» A folder of resources to developers

* May contain

« A descriptive property list (required)
» A binary to load into the kernel

» Localizable strings files, icons

» Utility binaries, firmware images

e Other bundles (including K

L XT5s)

KEXT Example: Structure

~ IOUSBFamily.kext

~ Contents
Info.plist

~ MacOS
IOUSBFamily

~ Pluglns
~~ AppleUSBComposite.kext
7~ IOUSBLib.bundle
~~ IOUSBUserClient.kext

KEXT Example: Structure

~ IOUSBFamily.kext

~ Contents

Info.plist
~ MacOS
IOUSBFamily

~ Pluglns
~~ AppleUSBComposite.kext
~~ IOUSBUserClient.kext
7~ IOUSBLib.bundle

KEXT Example: Info.plist

* Info.plist is an XML property list that identifies
the KEXT and its contents

* Critical properties:
- CFBundleldentifier = “com.you.driver”
- CFBundleVersion = “1.2.3b4”
« CFBundleShortVersionString = “1.2.3”
- OSBundleLibraries = “com.apple.io...”
- |OKitPersonalities ={ ...}

KEXT Example: Structure

~ IOUSBFamily.kext

~ Contents

Info.plist

~ MacOS
IOUSBFamily

~ Pluglns
~~ AppleUSBComposite.kext
~ I0USBUserClient.kext
7~ IOUSBLib.bundie

KEXT Example: Binary

* Optional
* Mach-O format

* There are two standard entry points
- module_start()
- module_stop()

*[/O Kit KEXTs do not use module start/stop

KEXT Example: Structure

~ IOUSBFamily.kext

~ Contents
Info.plist

~ MacOS
IOUSBFamily

~ Pluglns
~~ AppleUSBComposite.kext
~~ I0USBUserClient.kext
7~ IOUSBLib.bundle

KEXT Example: Pluglns

* Optional

* Can contain
e Other KEXTSs (sub-KEXTSs)
» Device Interface libs (CFBundles)
» Any other kind of bundle

* Allows driver suite to be delivered as single KEXT

* Only one level of nesting supported

KEXTSs as Libraries

* KEXTs may link against other (library) KEXTS

* Dependencies are expressed in
OSBundleLibraries dictionary

* Each entry contains a CFBundleldentifier
and CFBundleVersion

* Library KEXTs must provide
OSBundleCompatibleVersion property
indicating the oldest version with which
it is binary compatible

KEXTSs as Libraries

* Driver com.you.driver depends on
com.you.library version 2.0

® Library com.you.library is installed
« CFBundleVersion is 3.0
 OSBundleCompatibleVersion is 1.0

* Since the driver depends on a version within
the library’s compatible version range, the two
are compatible

KEXT Suites

* Sub-K

X Ts, KEXT libraries, and Kl

XT

matching can be used to divide one KEXT
into a “KEXT Suite”

* This should be done if significant pieces
of the KEXT will not be used all the time

e Init-time code (such as firmware)

e Product variants allow for
mix-and-match drivers

« Device may be attached by a variety of buses

s

KEXT Management
at Boot Time

* Only drivers with the OSBundleRequired
property are considered at boot time

* BootX loads the Extensions.mkext cache if
possible, or scans the Extensions folder if not

« Uses modification date to decide

e Kernel-resident code links and executes each
KEXT as needed

KEXT Management at Run Time

* KEXT daemon (kextd) is launched shortly
after multiuser startup by the /etc/rc script

* kextd contacts the

kernel and takes

over KEXT management duties

* Kernel-resident linking code is jettisoned
to free up memory

* kextd processes K
the kernel

EXT load requests from

What Causes KEXTs to Load?

* KEXTs are loaded only on demand

« [/O

Kit Drivers and Families are requested via

family matching as hardware is discovered

» Filesystem KEXTs are loaded during volume
mounting by exec’ing kextload

e NKI

is are loaded by Startup Items, or by

particular actions like ppp connection

* The exact rules for mapping an event to a
particular KEXT vary by subsystem

What Causes KEXTs to Unload?

* KEXTs are unloaded only on demand

« I/O Kit Drivers and Families unload about a
minute after they are no longer referenced

e Filesystem K

EXTs can unload during

volume unmount

« NKEs typically do not unload, or are unloaded
due to particular actions, such as ppp
connection tear-down

* The kextunload utility will attempt to unload a

KEXT, though it may fail the unload request

¢

KEXT Binary
Compatibility Issues

* KEXT management is based on static linking—we are
limited to the information provided by the compiler
in the KEXT’s symbol table

* List all CFBundleldentifiers on which you depend,
using the oldest version number that supports the APIS
you need (see “Kernel Extension Dependencies”

* Build using the headers from the oldest version of
the OS on which you want to run

* Use gce 2.95 if you want to run on anything prior
to Jaguar ,

KEXT Binary
Compatibility Issues

* Avoid direct use of Mach and BSD APIs if possible;
they are more likely to change in binary-
incompatible ways

* We will be working to create supportable APIs in
the future for network and filesystem KEXTs

* Developers will need to migrate to these new APIs,
since we will have to deprecate existing ones to
move forward

* Stay in contact with DTS or watch the Darwin §r0ups
to find out how these transitions will be stage

s

Manipulating KEXTS
From Applications

* KEXTs should be installed by unpacking to /tmp,
then moving to /System/Library/Extensions

* Remove KEXTs by moving them to /tmp

* “touch /System/Library/Extensions” after changing
any driver to ensure all KEXT caches are updated

* KEXTs need not be installed in
/System/Library/Extensions to be loaded

* KEXTs may be loaded or unloaded by running
the KEXT utilities from a setuid utility; use fork()
and exec()

KEXT Preferences

* [deally, avoid K

EXT preferences completely

« Adds complexity to the Ul

o More state

to manage (and corrupt)

* Preferences may not be stored in the

KEXT bundle

* Store preferences in /Library/Preferences
* Use KEXT’s CFBundleldentifier as the file name

KEXT Preferences

* Provide a prefs utility as a
» Resource of your KEXT
» Stand-alone app
« Preference pane in */Library/PreferencePanes

* The utility may present Ul to the user

* Utility may use CFPreferences to read and write
the preference file (see “Core Foundation
Preference Services”)

* Utility may communicate with your driver
instances using any available access mechanism

Development Tips

Loading and Unloading

* Add IOKitDebug=065535 (integer) to your
driver’s personality to get additional logging
during matching—look in /var/log/system log

* Use /ust/shin/ioreg -c myClass to see where
your driver fits into the IORegistry

* Use /ust/shin/ioclasscount myClass . . to see
how many instances of your driver remain—
can help diagnosing kextunload failures

Development Tips

Panics and Hangs

* Execute /ust/sbin/nvram boot-args="debug=4"
and reboot your test machine to enable remote
attach—this allows Cmd +Pwr to interrupt
many hangs

* Do not put your kexts in
/System/Library/Extensions; load
them manually using kextload

Development Tips

Panics and Hangs

* Make use of remote debugging using symbols
from manual kextload—see “Hello Debugger”
tutorial

*[OLog() and printf() are not synchronous and
have a limited bandwidth. If you want to see all
messages leading up to a panic or hang, log in as
“>console” before triggering failure

Preparing a KEXT
for Deployment

* Make sure code is ready for release:

 Remove assert(), Debugger() calls. . -

e Get rid of diagnostic messages

 Remove IOKitDebug property or set to 0

« Do not forget to set appropriate version numbers

* Build with “Deployment” build-style in PB, or

at least run strip -S all KEXT binaries

Package the K
PackageMaker; See “Packaging Your KEXT for

XT using a tool such as

Distribution and Installation”

Preparing a KEXT
for Deployment

* Always test your installation process!
*Verify that each KEXT is correctly installed
 Ownership must be (root:wheel)

« Directory permissions should be 755
» File permissions should be 644

y

Managing Kernel Extensions

Nik Gervae
KEXT Management Engineer

New KEXT Tools
and Techniques

* All-new codebase
« Much more extensible and maintainable
* Built on a comprehensive library

o In Darwin under IOKitUser and
kext tools projects

« Not for third party use yet, but someday . . -

The Tools

* kextload (obsoletes kmodload, kmodsyms)
 Many new options for debugging
e Installed with base system
» Usage compatible with prior versions
* kextunload (obsoletes kmodunload)
e Installed with base system
» Usage compatible with prior versions

The Tools

* kextstat (obsoletes kmodstat)
Do not have to be root to run

« Installed with developer tools;
not in base system

* kextcache (obsoletes mkextcache)
« Installed with the base system

KEXT Manager Daemon

* kextd adds options

« Installed with base system, but considered
an implementation detail

« Do not rely on presence of kextd executable
O Process

Using kextload

*Verbose logging: use -v for 6 levels of verbose
logging (WWDC seed contains a bug at level 6,
so avoid using it when loading a kext)

* Generating symbols: use -

« Automatically generates symbols for all
libraries too; no more kmodsyms -d ... -d ...

* Generating symbols without loading:
use -n, -a, -A, -k

Using kextload

* Debugging driver start() functions: use -I, -m

* Debugging other KEXT start routines: use -i, -I
* Specifying dependencies explicitly: use -d, -r, -¢

* Skipping authentication during development:
use -z (DevTools version only)

* kextload performs strict authentication if you
use any new option, as well as with -i

Veritying Your KEXT

* Use the -t option to perform a full
on your KEXT

* Diagnoses problems with the info

set of checks

dictionary,

with file ownership and permissions, and with

library dependencies

FXT as a test

* Always run kextload -nt on your K
before shipping software

Creating Multi-KEXT Caches

* kextcache replaces mkextcache

* Allows precise inclusion of KEXTs with -1, -L, -n,
-N options

* With -1 and -n, KEXTs named on the command

line are always included regardless of
OSBundleRequired setting

*With -L and -N, all KEXTSs are screened by
OSBundleRequired

* One small bug in WWDC seed: Pluglns missed
on explicitly-named KEXTs

Examining Loaded KEXTs

* kextstat replaces kmodstat

* Does not require running as root

* Skip in-kernel components with -k
* Skip header with -I; useful for shell

script processing

XT with -b

* Get info about a specific Kl

Finding a KEXT

X TS

e New function in IOKitUser finds K

installed in /System/Library/Extensions

CFURLRef

KextManagerCreateURLForBundleldentifier(

CFAllocatorRef allocator,
CFStringRef bundleldentifier);

KEXT Tools Suite History

* Mac OS5 X 10.0
« Boot-time driver loading support
* Mac OS5 X 10.1

o Extension.mkext cache introduced
to improve boot performance

® Jaguar
« Update toolset
» Build base for new features
« Improved performance and footprint

Future Directions

* Parity between kernel and user-space code
* Clean up kernel “kmod” API; avoid using

* Make KEXT management library available
for apps

* KEXT bundle signing
* [nput from developers

Roadmap

100 The Darwin Road Map Room A1
Mon., 2:00pm
103 Open Source, Apple, and You Civic
Tue., 2:00pm
107 The Darwin Kernel Civic
Wed., 9:00am
FF002 Darwin Room J1

Wed., 3:30pm

Who to Contact

Craig Keithley

USB and FireWire Technology Evangelist
keithley@apple.com

’

http://developer.apple.com/wwdc2002/urls.html '

For More Information

* Apple Developer Website

http:/developer.apple.com

* Darwin Project Website and Mailgroups
http:/developer.apple.com/darwin/

Documentation

KEXT Management

* Man pages

o kextload, kextunload, kextcache,
zgextstat,
kextd

* Release note

* Revised 1/O Kit documentation
Documentation > Darwin > I/0 Kit Documentation

s
http://developer.apple.com/techpubs/macosx/Darwin/index.html .

Foesktop: No such file or

[duarte:~] ryonX |s

[duarte:/Library] ryonX
[cuarite:/LibraryWebserve
CGI-Executobles Document

Craig Keithley
USB and FireWire Technology Evangelist
keithley @apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

